Pages

RBO Play As Monster

Minggu, 31 Oktober 2010

Kode Genetika

kode-genetika
kode-genetika
Gen tertentu membawa informasi yang dibutuhkan untuk membuat protein dan informasi itulah yang disebut sebagai kode genetik. Dengan kata lain, kode genetik adalah cara pengkodean urutan nukleotida pada DNA atau RNA utnuk menentukan urutan asam amino pada saat sintesis protein. Informasi pada kode genetik ditentukan oleh basa nitrogen pada rantai DNA yang akan menentukan susunan asam amino.
Dalam tahun 1968 nirenberg, khorana dan Holley menerima hadiah nobel untuk penelitian mereka yang sukses menciptakan kode-kode genetik yang hingga sekarang kita kenal. Seperti kita ketahui asam amino dikenal ada 20 macam. Yang menjadi masalah bagaimana 4 basa nitrogen ini dapat mengkode 20 macam asam amino yang diperlukan untuk mengontrol semua aktifitas sel?
Para peneliti melakukan penelitian pada bakteri E. Coli mula mula digunakan basa nitrogen singlet maka diper oleh 4 asam amino saja yang dapat diterjemahkan padahal ke 20 asam amino ini harus diterjemahkan semua agar protein yang dihasilkan dapat digunakan, kemudian para ilmuwan mencobalagi dengan kodon duplet dan baru dapat untuk menterjemahlkan 16 asam amino ini pun belum cukup juga. Kemudian dicoba dengan triplet dan dapat menterjemahkan 64 asam amino hal ini tidak mengapa sekalipun melebihi 20 asam amino toh dari 64 asam amino yang diterjemahkan ada yang memilii simbul/fungsi yang sama diantaranya (kodon asam assparat(GAU dan GAS) sama dengan asam
asam tirosin(UAU,UAS) sama juga dengan triptopan(UGG) bahkan ini sangat menguntungkan pada proses pembentukkan protein karena dapat menggantikan asam amino yang kemungkinan rusan selain itu dari 20 asam amino diantaranya ada yang berfungsi sebagai agen pemotong gen atau tidak dapat bersambung lagi dengan doubel helix asam amino yang berfungsi sebagai agen pemotong gen diantaranya (UAA,UAG,UGA)
beberapa sifat dari kode triplet diantaranya :
1. kode genetik ini mempunyai banyak sinonim sehingga hampir setiap asam amino dinyatakan oleh lebih dari sebuah kodon. Contoh semua kodon yang diawali dengan SS memperinci prolin,(SSU,SSS,SSA dan SSG) semua kodon yang diawali dengan AS memperinci treosin(ASU,ASS,ASA,ASG).
2. tidak tumpang tindih,artinya tiada satu basa tungggalpun yang dapat mengambil bagian dalam pembentukan lebih dari satu kodon,sehingga 64 itu berbeda-beda nukleotidanya.
3. kode genetik dapat mempunyai dua arti yaitu kodon yang sama dapat memperinci lebih dari satu asam amino.
4. kode genetik itu ternyata universal
Tiap triplet yang mewakili informasi bagi suatu asam amino tertentu dinyatakan sebagai kodon.Kode genetika bersifat degeneratif dikarenakan 18 dan 20 macam asam amino ditentukan oleh lebih dari satu kodon, yang disebut kodon sinonimus.Hanya metionin dan triptofan yang memiliki kodon tunggal.Kodon sinonimus tidak ditempatkan secara acak, tetapi dikelompokkan.Kodon sinnonimus memiliki perbedaan pada urutan basa ketiga.
SINTESIS PROTEIN
anatomi-ribosom
anatomi-ribosom
Ada banyak tahapan antara ekspresi genotip ke fenotip.Gen-gen tidak dapat langsung begitu saja menghasilkan fenotip-fenotip tertentu.Fenotip suatu individu ditentukan oleh aktivitas enzim (protein fungsional).Enzim yang berbeda akan menimbulkan fenotip yang berbeda pula.Perbedaan satu enzim dengan enzim yang lain ditentukan oleh jumlah jenis dan susunan asam amino penyusun protein enzim.Pembentukan asam amino ditentukan oleh gen atau DNA.
Ekspresi gen merupakan proses dimana informasi yang dikode di dalam gen diterjemahkan menjadi urutan asam amino selama sintesis protein.Dogma sentral mengenai akspresi gen, yaitu DNA yang membawa informasi genetik yang ditrnaskripsi oleh RNA, dan RNA diterjemahkan menjadi polipeptida.Ekspresi gen merupakan sintesis protein yang terdiri dari dua tahap, yaitu tahap pertama urutan rantai nukleotida tempale (cetakan) dari suatu DNA untai ganda disalin untuk menghasilkan satu rantai molekul RNA.Proses ini disebut transkripsi dan berlangsung di inti sel.Tahap kedua merupakan sintesis pilopeptida dengan urutan spesifik berdasarkan rantai RNA yang dibuat pada tahap pertama.Proses ini disebut translasi.
Transkripsi
transkripsi-dan-translasi
transkripsi-dan-translasi
Transkripsi merupakan sintesis RNA dari salah satu rantai DNA, yaitu rantai cetakan atau sense, sedangkan rantai DNA komplemennya disebut rantai antisense.Rentangan DNA yang ditranskripsi menjadi molekul RNA disebut unit transkripsi.
RNa dihasilkan dari aktivitas enzim RNA polimerase.Transkripsi terdiri dari tiga tahap, yaitu inisiasi (permulaan), elongasi (pemanjangan), dan terminasi (pengakhiran) rantai RNA.
Inisiasi
Daerah DNA dimana RNA polimerase melekat dan mengawali transkripsi disebut promoter.Suatu promoter mencakup titik awal transkripsi dan biasanya membentang beberapa pasangan nukleotida di depan titik awal tersebut.Selain itu, promoter juga menentukan di mana transkripsi dimulai, promoter juga menentukan yang mana dari kedua untai heliks DNA yang digunakan sebagai cetakan.
Elogasi
Setelah sintesis RNA berlangsung, NDA heliks ganda terbentuk kembali dan molekul RNA baru akan dilepas dari cetakan DNA-nya.Transkripsi berlanjut pada laju kira-kira 60 nukleotida per detik pada sel eukariotik.
Terminasi

Transkripsi berlangsung sampai RNA polimerase mentranskripsi urutan DNA yang disebut terminator.Terminator merupakan suatu urutan DNA yang berfungsi menghentikan proses transkripsi.Pada sel prokariotik, transkripsi biasanya berhenti tepat pada saat RNA polimerase mencapai titik terminasi.Sedangkan pada sel eukariotik, RNA pilomerase terus melawati titik terminasi.RNA yang telah terbentuk akan terlepas dari enzim tersebut.
Translasi
Dalam proses translasi, sel menginterpretasikan suatu kode genetik menjadi protein yang sesuai.Kode geneti tersebut berupa serangkaian kodon di sepanjang molekul RNAd, interpreternya adalah RNAt.RNAt mentransfer asam amino-asam amino dari kolam asam amino di sitoplasma ke ribosom.Molekul RNAt tidak semuanya identik.Pada tiap asam amino digabungkan dengan RNAt yang sesuai oleh suatu enzim spesifik yang disebut aminoasil-RNAt sintetase ( aminoacyl-tRNA synthetase ).Ribosom memudahkan pelekatan yang spesifik antara antikodon RNAt dengan kodon RNAd selama sintesis protein.Sebuah ribosom tersusun dari dua subunit, yaitu subunit besar dan subunit kecil.Subunit ribosom dibangun oleh protein-protein dan molekul-molekul RNAr.
Tahap translasi dapat dibagi menjadi tiga tahap seperti transkripsi, yaitu inisiasi elongasi, dan terminasi.Semua tahapan ini memerlukan faktor-faktor protein yang membantu RNAd, RNAt, dan ribosom selama proses translasi.Inisiasi dan elongasi rantai polipeptida jga membutuhkan sejumlah energi yang disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip ATP.
inisiasi
Tahap inisiasi dari translasi terjadi dengan adanya RNAd, sebuah RNAt yang memuat asam amino pertma dari polipeptida, dan dua subunit ribosom.Pertama, subunit ribosom kecil mengikatkan diri pada RNAd dan RNAt inisiator.Di dekat tempat pelekatan ribosom subunit kecil pada RNAd terdapat kodon inisiasi AUG, yang memberikan sinyal dimulainya proses translasi.RNAt inisiator, yang membawa asam amino metionin, melekat pada kodon inisiasi AUG.
Oleh karenanya, persyaratan inisiasi adalah kodon RNAd harus mengandung triplet AUG dan terdapat RNAt inisiator berisi antikodon UAC yang membawa metionin.Jadi pada setiap proses translasi, metionin selalu menjadi asam amino awal yang diingat.Triplet AUG dikatakan sebagai start codon karena berfungsi sebagai kodon awal translasi.
Elongasi
Pada tahap elongasi dari translasi, asam amino berikutnya ditambahkan satu per satu pada asam amino pertama (metionin).
Pada ribosom membentuk ikatan hidrogen dengan antikodon molekul RNAt yang komplemen dengannya.Molekul RNAr dari subunit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkanpolipeptida yang memanjang ke asam amino yang baru tiba.Pada tahap ini polipeptida memisahkan diri dari RNAt tempat perlekatannya semula, dan asam amino pada ujung karboksilnya berikatan dengan asam amino yang dibawa oleh RNAt yang baru masuk.Saat RNAd berpindah tempat, antikodonnya tetap berikatan dengan kodon RNAt.RNAd bergerak bersama-sama dengan antikodon dan bergeser ke kodon berikutnya yang akan ditranslasi.Sementara itu, RNAt yang tanpa asam amino telah diikatkan pada polipeptida yang sedang memanjang dan selanjutnya RNAt keluar dari ribosom.Langkah ini membutuhkan energi yang disediakan oleh hirolisis GTP.Kemudian RNAd bergerak melalui ribosom ke satu arah saja, kodon satu ke kodon lainnya hingga rantai polipeptidanya lengkap.
terminasi
Tahap akhir translasi adalah terminasi.Elongasi berlanjut hingga ribosom mencapai kodon stop.Triplet basa kodon stop adalah UAA, UAG, atau UGA.Kodon stop tidak mengkode suatu asam amino melainkan bertindak sebagai sinyal untuk menghentikan translasi.

Sabtu, 30 Oktober 2010

You Belong With Me



Lyrics to You Belong With Me :
You're on the phone with your girlfriend, She's upset
She's going off about something that you said
She doesnt get your humour like I do

I'm in the room, its a typical Tuesday night
I'm listening to the kind of music she doesnt like
And she'll never know your story like I do

But she wears short skirts, I wear t-shirts
She's cheer captain and I'm on the bleachers
Dreaming bout the day when you wake up and find
That what you're lookin for has been here the whole time

If you could see that I'm the one who understands you
Been here all along so why can't you see?
You belong with me
You belong with me

Walkin the streets with you in your worn out jeans
I cant help thinking this is how it ought to be
Laughing on the park bench thinkin to myself
Hey isnt this easy?

And you've got a smile that could light up this whole town
I havent seen it in awhile, since she brought you down
You say you find I know you better than that
Hey, Whatcha doing with a girl like that?

She wears high heels, I wear sneakers
She's cheer captain and I'm on the bleachers
Dreaming bout the day when you wake up and find
That what you're looking for has been here the whole time

If you could see that I'm the one who understands you
Been here all along so why can't you see?
You belong with me

Standin by, waiting at your back door
All this time how could you not know that?
You belong with me
You belong with me

Oh I remember you driving to my house in the middle of the night
I'm the one who makes you laugh when you know you're about to cry
I know your favorite songs and you tell me about your dreams
I think I know where you belong. I think I know it's with me.

Can't you see that I'm the one who understands you?
Been here all along so why can't you see?
You belong with me

Standing by or waiting at your back door
All this time how could you not know that
You belong with me
You belong with me

Have you ever thought just maybe
You belong with me
You belong with me

Pertumbuhan dan perkembangan

Perbedaan Pertumbuhan dan perkembangan

Pertumbuhan
Bertambahnya ukuran seperti panjang, lebar, volume dan massa.
Bersifat kuantitatif
Irreversibel (tidak dapat kembali ke keadaan semula)
Dapat diukur dengan menggunakan alat: auksanometer

Perkembangan
Suatu proses menuju kedewasaan (menuju suatu keadaan yang lebih tinggi, lebih teratur dan lebih kompleks)
Bersifat kualitatif
Reversibel (dapat kembali ke keadaan semula)
Tidak dapat diukur


Macam-macam pertumbuhan pada tumbuhan, yaitu:

1. Pertumbuhan primer adalah pertumbuhan yang memanjang baik yang terjadi pada ujung akar maupun ujung batang. Pertumbuhan primer dapat diukur secara kuantitatif yaitu dengan menggunakan alat auksanometer .

Pertumbuhan primer pada ujung akar dan ujung batang dapat dibedakan menjadi 3 daerah yaitu:
a. Daerah pembelahan sel, terdapat di bagian ujung akar. Sel-sel di daerah ini aktif membelah (bersifat meristematik)
b. Daerah perpanjangan sel, terletak di belakang daerah pembelahan. Sel-sel di daerah inimemiliki kemampuan untuk membesar dan memanjang.
c. Daerah diferensiasi sel, merupakan daerah yang sel-selnya berdiferensiasi menjadi sel-sel yang mempunyai fungsi dan struktur khusus.

2. Pertumbuhan sekunder adalah pertumbuhan yang dapat menambah diameter batang. Pertumbuhan sekunder merupakan aktivitas sel-sel meristem sekunder yaitu kambium dan kambium gabus. Pertumbuhan ini dijumpai pada tumbuhan dikotil.

Macam-macam Perkecambahan pada Biji
1. Perkecambahan hipogeal: apabila terjadi pembentangan ruas batang teratas (epikotil) sehingga daun lembaga tertarik keatas tanah tetapi kotiledon tetap di dalam tanah.
Contoh: perkecambahan pada biji kacang tanah dan kacang kapri.
2. Perkecambahan epigeal: apabila terjadi pembentangan ruas batang di bawah daun lembaga atau hipokotil sehingga mengakibatkan daun lembaga dan kotiledon terangkat ke atas tanah. Contoh: perkecambahan pada biji buncis dan biji jarak.

Faktor-faktor yang mempengaruhi Pertumbuhan pada tumbuhan

 
1. Faktor eksternal/lingkungan: faktor ini merupakan faktor luar yang erat sekali hubungannya dengan proses pertumbuhan dan perkembangan. Beberapa faktor eksternal yang mempengaruhi pertumbuhan tumbuhan adalah sebagai berikut.
Air dan mineral
Kelembaban.
Suhu
Cahaya

2. Faktor internal: faktor yang melibatkan hormon dan gen yang akan mengontrol pertumbuhan dan perkembangan tumbuhan.
Macam-macam hormon pada tumbuhan:
Auksin
Giberelin
Sitokinin
Gas Etilen
Asam Absisat
Kalin

Macam-macam hormon kalin adalah sebagai berikut.:
Rhizokalin: merangsang pembentukan akar
Kaulokalin: merangsang pembentukan batang
Anthokalin: merangsang pembentukan bunga
Filokalin: merangsang pembentukan daun

Pengaruh Cahaya pada pertumbuhan Tumbuhan:
Cahaya bermanfaat bagi tumbuhan terutama sebagai energi yang nantinya digunakan untuk proses fotosintesis. Cahaya juga berperan dalam proses pembentukan klorofil. Akan tetapi cahaya dapat bersifat sebagai penghambat (inhibitor) pada proses pertumbuhan, hal ini terjadi karena cahaya dapat memacu difusi auksin ke bagian yang tidak terkena cahaya. Sehingga, proses perkecambahan yang diletaan di tempat yang gelap akan menyebabkan terjadinya etiolasi

Pengaruh Nutrien pada pertumbuhan Tumbuhan:
No Unsur hara Fungsi
1 Belerang (S) Merupakan komponen utama protein dan koenzim pada tumbuhan
2 Fosfor (P) Merupakan komponen pembentuk asam nukleat, fosfolipid, ATP dan beberapa koenzim
3 Magnesium (Mg) Merupakan komponen klorofil dan mengaktifkan banyak enzim pada tumbuhan
4 Kalsium (Ca) Merupakan unsur penting dalam pembentukan dan stabilitas dinding sel, memelihara struktur dan permeabilitas membran, dan mengaktifkan banyak enzim pada tumbuhan
5 Kalium (K) Merupakan kofaktor yang berfungsi dalam sintesis protein
6 Nitrogen (N) Merupakan komponen asam nukleat, protein, hormon dan koenzim
7 Oksigen (O) Merupakan komponen utama senyawa organik tumbuhan
8 Karbon (C) Merupakan komponen utama senyawa organik tumbuhan
9 Hidrogen (H) Merupakan komponen utama senyawa organik tumbuhan
10 Molibdenum (Mo) Komponen esensial untuk fiksasi nitrogen
11 Nikel (Ni) Kofaktor untuk enzim yang berfungsi dalam metabolisme nitrogen
12 Seng (Zn) Merupakan unsur yang aktif dalam pembentukan klorofil, mengaktifkan beberapa enzim
13 Mangan (Mn) Merupakan unsur yang aktif dalam pembentukan klorofil, mengaktifkan beberapa enzim
14 Besi (Fe) Merupakan komponen sitokrom, mengaktifkan beberapa enzim
15 Klor (Cl) Diperlukan untuk tahapan pemecahan air pada fotosintesis, diperlukan dalam menjaga keseimbangan air


penjelasan
Banyak faktor alasan atau penyebab yang mempengaruhi perkembangan dan pertumbuhan tumbuh-tumbuhan, tanaman, pohon, dll. Apabila faktor tersebut kebutuhannya tidak terpenuhi maka tanaman tersebut bisa mengalami dormansi / dorman yaitu berhenti melakukan aktifitas hidup. Faktor pengaruh tersebut yakni :
1. Faktor Suhu / Temperatur Lingkungan
Tinggi rendah suhu menjadi salah satu faktor yang menentukan tumbuh kembang, reproduksi dan juga kelangsungan hidup dari tanaman. Suhu yang baik bagi tumbuhan adalah antara 22 derajat celcius sampai dengan 37 derajad selsius. Temperatur yang lebih atau kurang dari batas normal tersebut dapat mengakibatkan pertumbuhan yang lambat atau berhenti
2. Faktor Kelembaban / Kelembapan Udara
Kadar air dalam udara dapat mempengaruhi pertumbuhan serta perkembangan tumbuhan. Tempat yang lembab menguntungkan bagi tumbuhan di mana tumbuhan dapat mendapatkan air lebih mudah serta berkurangnya penguapan yang akan berdampak pada pembentukan sel yang lebih cepat.
3. Faktor Cahaya Matahari
Sinar matahari sangat dibutuhkan oleh tanaman untuk dapat melakukan fotosintesis (khususnya tumbuhan hijau). Jika suatu tanaman kekurangan cahaya matahari, maka tanaman itu bisa tampak pucat dan warna tanaman itu kekuning-kuningan (etiolasi). Pada kecambah, justru sinar mentari dapat menghambat proses pertumbuhan.
4. Faktor Hormon
Hormon pada tumbuhan juga memegang peranan penting dalam proses perkembangan dan pertumbuhan seperti hormon auksin untuk membantu perpanjangan sel, hormon giberelin untuk pemanjangan dan pembelahan sel, hormon sitokinin untuk menggiatkan pembelahan sel dan hormon etilen untuk mempercepat buah menjadi matang

Kamis, 28 Oktober 2010

ISU

Kota Bandung dan sekitarnya terancam diguncang gempa besar berkekuatan 7,5 pada skala Richter (SR). Ancaman ini bisa muncul, jika terjadi pergerakan di sejumlah lempeng penyusun patahan Cimandiri-Lembang. Jika ini terjadi, gempa besar tersebut akan mengguncang cekungan Bandung. Selain Kota Bandung, Cimahi, Padalarang, serta Lembang, gempa juga mengintai sejumlah wilayah di Sukabumi, termasuk Palabuhanratu.
”Sesar Cimandiri-Lembang masih tergolong aktif. Yang menjadi masalah terbesar, sesar ini dikelilingi wilayah padat penduduk, seperti Kota Bandung dan Kota Cimahi,” tutur pakar geoteknologi dari Lembaga Ilmu Pengetahuan Indonesia (LIPI), Dr. Danny Hilman Natawidjaja, usai Seminar Mitigasi Bencana Geologi di Hotel Horison, Bandung, Rabu (23/5).
Sesar (patahan) yang memanjang dari Palabuhanratu Kab. Sukabumi hingga Maribaya Lembang itu tersusun oleh lebih dari lima segmen batuan. Salah satunya, Segmen Maribaya-Cimahi, yang panjangnya mencapai 25 km. Menurut Danny, jika terjadi secara bersamaan, pergerakan 3-4 segmen saja sudah bisa menimbulkan gempa dengan kekuatan mencapai 7,5 pada skala Richter.
Berdasarkan penelusuran ”PR”, gempa berkekuatan 7-7,9 SR dapat mengakibatkan kerusakan serius pada areal yang cukup luas. Diperkirakan, gempa ini bisa menghancurkan sebagian besar gedung dan fondasinya. Bahkan, getarannya bisa menimbulkan retakan tanah di areal yang cukup luas. Kerusakan yang ditimbulkan bisa disetarakan dengan ledakan 160 juta ton TNT (trinitrotoluene).
Kalaupun yang mengalami pergeseran hanya satu segmen, menurut Danny, gempa yang ditimbulkan bisa mencapai 6 SR. Bahkan, jika Segmen Maribaya-Cimahi yang bergerak, kekuatan gempa bisa menembus angka 6,9 SR. Gempa ini cukup untuk menimbulkan retakan tanah dan menghancurkan bangunan dalam radius lebih dari 100 kilometer.
Sayangnya, menurut Danny, hingga saat ini sesar Cimandiri-Lembang belum mendapat perhatian serius dari pemerintah. Padahal, potensi bencana yang akan ditimbulkan akibat pergerakan sesar tersebut cukup besar.
”Sejauh ini, pergerakan yang terjadi di sekitar patahan Cimandiri-Lembang memang masih relatif aman. Bahkan, berdasarkan data 100 tahun terakhir, belum diketahui adanya pergerakan yang bisa menimbulkan bencana besar,” tuturnya.
Namun, mengingat padatnya wilayah di sekitar sesar alam itu dan tingginya potensi gempa yang bisa ditimbulkan, ia menyarankan agar pemerintah segera melakukan penelitian lanjutan. ”Bagaimanapun kita tinggal di areal rawan gempa. Kapan saja, sesar tersebut bisa mengalami peningkatan aktivitas,” tuturnya.
Dia menilai, data yang ada saat ini belum mencukupi kebutuhan minimal untuk digunakan sebagai acuan melakukan tindakan pencegahan maupun langkah evakuasi. Padahal, selain kecepatan pergeseran, struktur tanah dan batuan yang ada di sekitar wilayah gempa juga memiliki andil yang besar untuk menentukan besarnya dampak yang ditimbulkan.
”Suatu gempa dengan kekuatan yang sama dapat menimbulkan efek yag berbeda, bahkan di dua lokasi yang jaraknya berdekatan sekalipun,” tutur Kepala Balai Penyelidikan dan Pengembangan Teknologi Kegunungapian (BPPTK) Yogyakarta Dr. Antonius Ratdomopurbo.
Walaupun sebuah bangunan yang berjarak 10 km dari pusat gempa rusak parah, menurut dia, tidak tertutup kemungkinan jika bangunan lain yang berjarak 3 km dari pusat gempa hanya mengalami retak ringan. Hal itu dipengaruhi susunan sedimentasi tanah yang ada di lokasi tersebut.
”Karena itu, untuk melakukan mitigasi bencana perlu dilakukan penelitian secara menyeluruh, termasuk struktur sedimentasi yang membangun lapisan tanah di suatu daerah. Dengan demikian, pemerintah bisa dengan efektif melakukan mitigasi bencana,” katanya.
Penelitian menyeluruh di patahan Cimandiri-Lembang, menurut Danny, diperlukan untuk memprediksi sumber gempa, efek yang ditimbulkan, dan bagaimana kerusakan yang akan timbul. ”Dengan demikian, proses mitigasi bencana bisa dilakukan dengan efektif dan efisien,” kata Danny. (A-150)***

Rabu, 27 Oktober 2010

Heart attack

Cell Cour

Journey Inside The Cell

E-learning : Pengertian, Konsep dan Contoh

Ketika kita telah memasuki dunia Internet, dimana semua ilmu pengetahuan telah dibangun dengan
sistem online untuk digunakan secara bersama dan jarak jauh. Sehingga dibutuhkan sistem tersebut
dengan istilah e-learning.
Internet adalah gudang segala hal. Kalau kita pintar memanfaatkan internet, banyak sekali manfaat
yang dapat kita dapatkan. Dan tak jarang, pengetahuan-pengetahuan tersebut bisa kita dapatkan
secara gratis. Salah satunya adalah materi dan dari kampus ternama juga. Sebagian malah telah 
dilengkapi tugas/ujian dan video.
Berikut ini adalah beberapa elearning yang bisa diakses :
1. Carnegie Mellon University
    http://cmu.edu/oli
2. Johns Hopkins Bloomberg School of Public Health
   http://ocw.jhsph.edu/
3. Massachussets Institute of Technology
   Untuk level undergraduate dan graduate
   http://ocw.mit.edu
4. Utah State University
  http://ocw.usu.edu/
5. Tufs University
  http://ocw.tufs.edu
Adapun untuk Pembuatan websitenya bisa dengan cara mudah, yaitu menggunkan Learning Menajement
System (LCMS). Mulai dari yang sederhana dan ada juga yang kaya fitur.  LCMS adalah juga software
yang umumnya bekerja secara online atau berbasis web. Jadi penggunanya menggunakan secara online.
Karena memang begitulah konsep e-learning.
Software-software tersebut adalah :
1. Atutor
Adalah LCMS yang dikembangkan Adaptive Technology Resource Centre University of Toronto
Berdasarkan info dari websitenya telah digunakan lebih dari 24 ribu instalasi Atutor yang terdaftar.
websitenya adalah : http://atutor.co
2. Claronline (http://claronline.net)
Clarorine memungkinkan guru membangun website online course yang efektif. Beberapa fitur yang tersedia
adalah :
a. Pengaturan dokumen pribadi user.
b. Pembuatan ujian online
c. Pengembangan learning path
d. Pengelompokan user
e. Wiki
f. Sarana diskusi
g. Agenda
dan sebagainya (rekomended deh )
4. Dukeos (http://dokeos.com)
Adalah LMS yang digunakan lebih dari 600 perusahaan dan administrasi public sebagai sarana elearning.
Beberapa fiturnya adalah :
a. Sarana ujian
b. Pembangunan learning path
c. Survey
d. Video Conference
dan lain-lainnya.
5. LRN (http://dotlrn.org)
Adalah software e-learning popular yang awalnya dikembangkan oleh MIT dan saat ini telah digunakan 
dari setengah juta pengguna berbagai kalangan. beberapa fiturnya adalah :
a. Pengaturan ujian
b. Email
c. Kalendar
d. Pengaturan Kurikulum
e. Pemberian tugas
f. Pembuatan FAQ
g. Forum
h. Learning Object Repository
i.Survei
6. Moodle (http://moodle.org)
Adalah software yang paling popular dalam dunia open source (Gratis).
Contoh ditanah air yang menggunakannya adalah UGM dan UI

Skema Pengembangannya adalah :
1. Diinstall diserver Lab disekolah yang terhubung internet dan digunakan dijaringan sekolah
2. Jika ingan akses dari mana saja tentunya membutuhkan server yang terhubung internet 24 jam, jadi
 bisa menggunakan jasa ISP untuk meletakkan server kita di kantor mereka/ ruang server mereka dengan 
istilah Colocation.

Narasumber :
Info Linux edisi mei 2008

Selasa, 26 Oktober 2010

Blosics 2 Level Pack - Play it on Not Doppler

Blosics 2 Level Pack - Play it on Not Doppler

FISIKA Pembiasan Cahaya

A. Apakah Pembiasan Cahaya Itu?

Pembiasan cahaya berarti pembelokan arah rambat cahaya saat melewati bidang batas dua medium bening yang berbeda indeks biasnya.

B. Hukum Snellius Pada Pembiasan

Misalkan cahaya merambat dari medium 1 dengan kecepatan v1 dan sudut datang i menuju ke medium 2. Saat di medium 2 kecepatan cahaya berubah menjadi v2 dan cahaya dibiaskan dengan sudut bias r seperti diperlihatkan pada Gambar di bawah :


Pada contoh di atas terlihat sinar datang (i) > sinar bias (r) atau dengan kata lain sinar bias mendekati garis nornal....terjadi ketika sinar menembus batas bidang dari medium yang renggang ke medium yang lebih rapat. bila sinar berasal dari sebaliknya yakni dari medium rapat ke medium yang lebih rengang maka sinar menjauhi garis normal (i < r)

Contoh:
Seberkas sinar datang dari udara ke lapisan minyak yang terapung di air dengan sudut datang 30°. Bila indeks bias minyak 1,45 dan indeks bias air 1,33, berapakah besar sudut sinar tersebut di dalam air?

Penyelesaian:
Pada kasus ini mula-mula berkas sinar merambat di udara lalu masuk ke lapisan minyak yang terapung di permukaan air, baru kemudian sinar masuk ke dalam air. Jadi, sebelum sampai ke dalam air sinar mengalami dua kali pembiasan seperti diperlihatkan gambar di bawah.




pada pengerjaan soal di atas  besar sudut r1 tidak dicari karena tidak dibutuhkan....yang dibutuhkan adalah sin r1 untuk mecari sin i2 karena sin r1 = sin i2.

C. Pemendekan Semu Akibat Pembiasan

pemendekan semu ini terjadi karena pembiasan di mana cahaya merambat dari medium optik yang lebih rapat ke medium optik yang kurang rapat, misalnya dari air ke udara.

 

Pada gambar di atas ada dua orang pengamat yang berbeda posisi yakni pengamat A membentuk sudut tertentu terhadap benda yang diamati sedangkan pengamat B tepat tegak lurus terhadap benda yang diamati, keduanya penganmat ada di medium udara dan benda yang mereka amati ada dalam air.

Untuk pengamat A (yang membentuk sudut tertentu dengan benda) berlaku hubungan :

h' = tinggi bayangan semu yang dilihat oleh pengamat pada posisi A
h = tinggi benda sesungguhnya
n1 = indeks bias medium tempat benda berada
n2 = indeks bias medium tempat pengamat berada
i = sudut datang
r = sudut bias



sedangkan unutuk pengamat B(yang tegak lurus dengan benda yang diamati) berlaku hubungan :


Rumus di atas juga berlaku untuk peristiwa pemanjangan jarak benda yang terjadi saat pengamat berada di medium yang lebih rapat dari benda yang diamati...misal pengamat berada di dalam air sedang memperhatikan suatu benda yang berada di udara...sehingga jarak benda terlihat lebih panjang dari jarak sebenarnya.

D. Pemantulan Total

saat cahaya merambat dari medium optik lebih rapat ke medium optik kurang rapat dengan sudut datang tertentu, cahaya akan dibiaskan menjauhi garis normal. Bila sudut datang terus diperbesar, maka suatu saat sinar bias akan sejajar dengan bidang yang berarti besar sudut biasnya 90°.Sekali lagi apabila sudut datang diperbesar, maka tidak ada lagi cahaya yang dibiaskan, sebab seluruhnya akan dipantulkan. Sudut datang pada saat sudut biasnya mencapai 90° ini disebut sudut kritis (saat sin r = sin 90 = 1).

Persamaan sudut kritis :

E. Pembiasan Pada Kaca Plan Paralel

Kaca plan paralel atau balok kaca adalah keping kaca tiga dimensi yang kedua sisinya dibuat sejajar

 

Persamaan pergeseran sinar pada balok kaca :



Keterangan :
d = tebal balok kaca, (cm)
i = sudut datang, (°)
r = sudut bias, (°)
t = pergeseran cahaya, (cm)

F. Pembiasan Pada Prisma, Sudut Deviasi dan deviasi minimum



Kita dapatkan persamaan sudut puncak prisma,


β = sudut puncak atau sudut pembias prisma
r1 = sudut bias saat berkas sinar memasuki bidang batas udara-prisma
i2 = sudut datang saat berkas sinar memasuki bidang batas prisma-udara

secara otomatis persamaan di atas dapat digunakan untuk mencari besarnya i2 bila besar sudut pembias prisma diketahui....

Persamaan sudut deviasi prisma :


Keterangan :
D = sudut deviasi
i1 = sudut datang pada bidang batas pertama
r2 = sudut bias pada bidang batas kedua berkas sinar keluar dari prisma
β = sudut puncak atau sudut pembias prisma

Hasilnya disajikan dalam bentuk grafik hubungan antara sudut deviasi (D) dan sudut datang pertama i1 :

 

dalam grafik terlihat devisiasi minimum terjadi saat i1 = r2


Persamaan deviasi minimum :
a.  Bila sudut pembias lebih dari 15°


Keterangan :
n1 = indeks bias medium
n2 = indeks bias prisma
Dm = deviasi minimum
β = sudut pembias prisma

b.  Bila sudut pembias kurang dari 15°


Keterangan
δ = deviasi minimum untuk b = 15°.
n2-1 = indeks bias relatif prisma terhadap medium
δ = sudut pembias prisma

G. Pembiasan Pada Bidang Lengkung/Sferis


Keterangan :
n1 = indeks bias medium di sekitar permukaan lengkung
n2 = indeks bias permukaan lengkung
s = jarak benda
s' = jarak bayangan
R = jari-jari kelengkungan permukaan lengkung

Seperti pada pemantulan cahaya, pada pembiasan cahaya juga ada perjanjian tanda berkaitan dengan persamaan-persamaan pada permukaan lengkung seperti dijelaskan dalam tabel berikut ini :


Untuk lebih jelasnya kita perhatikan contoh berikut ini :

Seekor ikan berada di dalam akuarium berbentuk bola dengan jari-jari 30 cm. Posisi ikan itu 20 cm dari dinding akuarium dan diamati oleh seseorang dari luar akuarium pada jarak 45 cm dari dinding akuarium. Bila indeks bias air akuarium 4/3 tentukanlah jarak orang terhadap ikan menurut

a) orang itu
b) menurut ikan


a. Menurut orang (Orang melihat ikan, berarti Sinar datang dari ikan ke mata orang)
Diketahui :
n1 = nair = 4/3
n2 = nu = 1
s = 20 cm
R = -30
(R bertanda negatif karena sinar datang dari ikan menembus permukaan cekung akuarium ke mata orang)
Ditanya : s’
 Jawab :
 


Jadi, jarak bayangan ikan atau jarak ikan ke dinding akuarium menurut orang hanya 18 cm (bukan 20 cm!). Tanda negatif pada jarak s’ menyatakan bahwa bayangan ikan yang dilihat orang bersifat maya. Sedangkan jarak orang ke ikan menurut orang adalah 45 cm ditambah 18 cm, yaitu 63 cm (bukan 65 cm!).

b. Menurut Ikan (Ikan melihat orang, berarti Sinar datang dari orang ke mata ikan)
Diketahui :
n1 = nu = 1
n2 = nair = 4/3
s = 45 cm
R = +30
(R bertanda positif karena sinar datang dari orang menembus permukaan cekung akuarium ke mata ikan)
Ditanya : s’
Jawab :


Jadi, jarak bayangan orang atau jarak orang ke dinding akuarium menurut ikan bukan 45 cm melainkan 120 cm. Tanda minus pada jarak bayangan menyatakan bahwa bayangan bersifat maya. Jarak orang ke ikan menurut ikan sama dengan 20 cm ditambah 120 cm, yakni 140 cm.

disebabkan jarak benda dengan bayangan yang dibentuk berbeda maka bayangan juga mengalami perbesaran (M) sebesar :


Fokus Permukaan Lengkung

Permukaan lengkung mempunyai dua titik api atau fokus. Fokus pertama (F1) adalah suatu titik asal sinar yang mengakibatkan sinar-sinar dibiaskan sejajar. Artinya bayangan akan terbentuk di jauh tak terhingga
(s’ = ~ ) dan jarak benda s sama dengan jarak fokus pertama F1.

Fokus kedua (F2) permukaan lengkung adalah titik pertemuan sinar-sinar bias apa bila sinar-sinar yang datang pada bidang lengkung adalah sinar-sinar sejajar. Artinya benda berada jauh di tak terhingga (s = ~ )


fokusnya :

Senin, 25 Oktober 2010

Biologi Meiosis propase 1

Biologi Mitosis

Cara membaca ukuran dalam mikrometer

<object width="480" height="385"><param name="movie" value="http://www.youtube.com/v/emdJEhEglIc?fs=1&amp;hl=en_US"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/emdJEhEglIc?fs=1&amp;hl=en_US" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object>